A note on arc-length variation in natural single-layer folds.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on arc-transitive circulant digraphs

We prove that, for a positive integer n and subgroup H of automorphisms of a cyclic group Z of order n, there is up to isomorphism a unique connected circulant digraph based on Z admitting an arc-transitive action of ZzH. We refine the Kovács–Li classification of arc-transitive circulants to determine those digraphs with automorphism group larger than ZzH. As an application we construct, for ea...

متن کامل

A Note on Convergence in Length

1. Introduction. Let J be a closed linear interval ao^tSfo. Let r(/) = (#(/), y(t) } z(t)), tSI, represent a vector function whose three components x(t), y(i) t z(t) are of bounded variation and continuous on I. This vector function determines in Euclidean 3-space a curve x~x{t), y~y(t), z=*z(t) whose length we denote by LQç). By convergence in length of a sequence of such vector functions $ n ...

متن کامل

Effect of Length-scale Parameter on Pull-in Voltage and Natural Frequency of a Micro-plate

This paper deals with the effect of the intrinsic material length-scale parameter on the stability and natural frequency of a rectangular micro-plate for two different cases; fully clamped and fully simply supported. A variational formulation based on Hamilton’s principle and the modified couple stress theory is used to obtain the nonlinear governing equation of a micro-plate incorporating the ...

متن کامل

A Note on Longest Paths in Circular Arc Graphs

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335–341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311–317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

متن کامل

A note on longest paths in circular arc graph

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335–341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311–317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Geological Society of Japan

سال: 1978

ISSN: 0016-7630,1349-9963

DOI: 10.5575/geosoc.84.35